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Chapter 1

Partitions
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What is a Latin square?

Definition
Let n be a positive integer.
A Latin square of order n is an n× n array of cells in which
n symbols are placed, one per cell, in such a way that each
symbol occurs once in each row and once in each column.

The symbols may be letters, numbers, colours, . . .

A Latin square of order 8
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Partitions

Definition
A partition of a set Ω is a set P of pairwise disjoint non-empty
subsets of Ω, called parts, whose union is Ω.

Definition
A partition P is uniform if all of its parts have the same size,
in the sense that, whenever Γ1 and Γ2 are parts of P, there is a
bijection from Γ1 onto Γ2.

Example

If Ω is the set of cells in a Latin square, then there are five
natural uniform partitions of Ω:

R each part is a row;
C each part is a column;
L each part consists of the those cells with a given letter;
U the universal partition, with a single part;
E the equality partition, whose parts are singletons.

Bailey Diagonal structures Ural seminar 5/45



Partitions

Definition
A partition of a set Ω is a set P of pairwise disjoint non-empty
subsets of Ω, called parts, whose union is Ω.

Definition
A partition P is uniform if all of its parts have the same size,
in the sense that, whenever Γ1 and Γ2 are parts of P, there is a
bijection from Γ1 onto Γ2.

Example

If Ω is the set of cells in a Latin square, then there are five
natural uniform partitions of Ω:

R each part is a row;
C each part is a column;
L each part consists of the those cells with a given letter;
U the universal partition, with a single part;
E the equality partition, whose parts are singletons.

Bailey Diagonal structures Ural seminar 5/45



Partitions

Definition
A partition of a set Ω is a set P of pairwise disjoint non-empty
subsets of Ω, called parts, whose union is Ω.

Definition
A partition P is uniform if all of its parts have the same size,
in the sense that, whenever Γ1 and Γ2 are parts of P, there is a
bijection from Γ1 onto Γ2.

Example

If Ω is the set of cells in a Latin square, then there are five
natural uniform partitions of Ω:

R each part is a row;
C each part is a column;
L each part consists of the those cells with a given letter;
U the universal partition, with a single part;
E the equality partition, whose parts are singletons.

Bailey Diagonal structures Ural seminar 5/45



The partial order on partitions of a set

A natural partial order on partitions of a set is defined by

P 4 Q if and only if every part of P is contained in a part of Q.

So E 4 P 4 U for all partitions P.

Definition
The infimum, or meet, of partitions P and Q
is the partition P∧Q each of whose parts is
a non-empty intersection of a part of P and a part of Q.
So P∧Q 4 P and P∧Q 4 Q;
and if S 4 P and S 4 Q then S 4 P∧Q.

Definition
The supremum, or join, of partitions P and Q
is the partition P∨Q which satisfies P 4 P∨Q and Q 4 P∨Q
and if P 4 S and Q 4 S then P∨Q 4 S.
Draw a graph by putting an edge between two points if they
are in the same part of P or the same part of Q. Then
the parts of P∨Q are the connected components of the graph.
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Hasse diagrams

Given a collection P of partitions of a set Ω,
we can show them on a Hasse diagram.
I Draw a dot for each partition in P .
I If P ≺ Q then put Q higher than P in the diagram.
I If P ≺ Q but there is no S in P with P ≺ S ≺ Q then draw a

line from P to Q.

Here is the Hasse diagram for a Latin square.

u

u
u u u
@
@
@

@
@
@�

�
�

�
�
�

E

C

U

R L

Bailey Diagonal structures Ural seminar 7/45



Hasse diagrams

Given a collection P of partitions of a set Ω,
we can show them on a Hasse diagram.
I Draw a dot for each partition in P .
I If P ≺ Q then put Q higher than P in the diagram.
I If P ≺ Q but there is no S in P with P ≺ S ≺ Q then draw a

line from P to Q.

Here is the Hasse diagram for a Latin square.

u

u
u u u
@
@
@

@
@
@�

�
�

�
�
�

E

C

U

R L

Bailey Diagonal structures Ural seminar 7/45



An alternative definition of Latin square

Definition
Let P and Q be uniform partitions of a set Ω. Then P and Q are
compatible if
I whenever ω1 and ω2 are points in the same part of P∨Q,

there are points α and β such that
I ω1 and α are in the same part of P,
I α and ω2 are in the same part of Q,
I ω1 and β are in the same part of Q,
I β and ω2 are in the same part of P.

I P∧Q is uniform.

Definition
A Latin square is a set {R, C, L} of pairwise compatible uniform
partitions of a set Ω which satisfy R∧ C = R∧ L = C∧ L = E
and R∨ C = R∨ L = C∨ L = U.

Bailey Diagonal structures Ural seminar 8/45



An alternative definition of Latin square

Definition
Let P and Q be uniform partitions of a set Ω. Then P and Q are
compatible if
I whenever ω1 and ω2 are points in the same part of P∨Q,

there are points α and β such that
I ω1 and α are in the same part of P,
I α and ω2 are in the same part of Q,
I ω1 and β are in the same part of Q,
I β and ω2 are in the same part of P.

I P∧Q is uniform.

Definition
A Latin square is a set {R, C, L} of pairwise compatible uniform
partitions of a set Ω which satisfy R∧ C = R∧ L = C∧ L = E
and R∨ C = R∨ L = C∨ L = U.

Bailey Diagonal structures Ural seminar 8/45



Another nice family of partitions

Definition
Suppose that P1, P2 and P3 are partitions of a set Ω, none of
which is U. Then
{P1, P2, P3} is a Cartesian decomposition of Ω of dimension 3
if |Γ1 ∩ Γ2 ∩ Γ3| = 1 whenever Γi is a part of Pi for i = 1, 2, 3.

Taking infima gives a Cartesian lattice.
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P1 ∧ P2 P1 ∧ P3 P2 ∧ P3

I Each partition is uniform.
I Each pair are compatible.
I Statisticians call this a

completely crossed
orthogonal block
structure.
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Coset partitions

Definition
Let H be a subgroup of a group G. Then PH is the partition of G
into right cosets of H.

Proposition

Let H and K be subgroups of a group G. The following hold.
1. PH is uniform.
2. PH ∧ PK = PH∩K.
3. PH ∨ PK = P〈H,K〉.
4. PH and PK are compatible if and only if HK = KH.
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Orthogonality

Let V be the real vector space RΩ.

If P is any partition of Ω, let VP be the subspace of V consisting
of vectors which are constant on each part of P.

dim(VP) = number of parts of P.
P 4 Q ⇐⇒ VQ ≤ VP.

In particular, VE = V
and VU is the 1-dimensional subspace of constant vectors.

VP ∩VQ = VP∨Q.

Consider the standard inner product on V.
Because VP ∩VQ 6= {0},
the subspaces VP and VQ cannot be orthogonal to each other.

Theorem
If P and Q are uniform and compatible then
VP ∩V⊥P∨Q is orthogonal to VQ ∩V⊥P∨Q.
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Orthogonal decomposition

Theorem
Suppose that P is a join semi-lattice of pairwise compatible uniform
partitions of Ω. For P in P , put

WP = VP ∩
(

∑
P≺Q

VQ

)⊥
.

Then the W-subspaces are pairwise orthogonal and

VQ =
⊕
Q4P

WP.

The partial order 4 has a zeta-function ζ defined by

ζ(Q, P) =
{

1 if Q 4 P,
0 otherwise.

So dim(VQ) = ∑P ζ(Q, P)dim(WP).
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Möbius inversion

dim(VQ) = ∑P ζ(Q, P)dim(WP)

We can write the names of the partitions in order such that
Q comes before P if Q ≺ P.

Then the square matrix ζ is upper-triangular
with all entries on the main diagonal equal to 1.
Hence the matrix ζ has an inverse matrix µ,
which is also upper-triangular
with all entries on the main diagonal equal to 1.
This is called the Möbius function,
which was extensively studied by Gian-Carlo Rota.
Applying so-called Möbius inversion to the equation at the top
of this slide gives

dim(WP) = ∑
Q

µ(P, Q)dim(VQ).

Bailey Diagonal structures Ural seminar 13/45



Möbius inversion

dim(VQ) = ∑P ζ(Q, P)dim(WP)

We can write the names of the partitions in order such that
Q comes before P if Q ≺ P.
Then the square matrix ζ is upper-triangular
with all entries on the main diagonal equal to 1.

Hence the matrix ζ has an inverse matrix µ,
which is also upper-triangular
with all entries on the main diagonal equal to 1.
This is called the Möbius function,
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Chapter 2

Some statistical history
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Statisticians at Rothamsted

Here are some of the statisticians who have worked at the
agricultural research station at Rothamsted.

Ronald Fisher 1919–1933 then UCL, then Cambridge
Frank Yates 1931–1968
Oscar Kempthorne 1941–1946 then Ames, Iowa
Desmond Patterson 1947–1967 then Edinburgh
John Nelder 1968–1984 previously National

Vegetable Research Station
Rosemary Bailey 1981–1990
Robin Thompson 1997–2012 (?) previously Edinburgh
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Photos: Fisher and Yates

Ronald Fisher Frank Yates
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Photos: Kempthorne and Patterson

Oscar Kempthorne

Desmond Patterson
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Photo: Nelder

John Nelder
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Nelder’s papers

In 1976–1978 I was employed as a post-doctoral research fellow
in the Statistics Department at Edinburgh University.
The aim was to apply ideas from combinatorics and group
theory to design of experiments.

At the start, Desmond Patterson gave me copies of John
Nelder’s two 1965 papers on orthogonal block structure,
and told me to read them.
After three months, I said “OK, I understand them now.”
Desmond responded “Hmph! That’s good. No one else does.”
I did not believe him then, but, looking back, I can see that his
approach did not incorporate Nelder’s ideas until much later.
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Kempthorne’s papers

Then my colleague Robin Thompson gave me a 1961 technical
report (long, but in typescript) by Oscar Kempthorne and his
colleagues in Ames. This developed essentially the same ideas
as Nelder’s: lattices of partitions using some of the partitions in
a Cartesian lattice (not necessarily with all coordinates having
the same number of values, for example, the rows and columns
of a rectangle).

Later I learnt that Kempthorne was furious that Nelder had
“stolen” his ideas. I believe that they simply developed them
independently, building on the work of Fisher and Yates. In
those days, it took much longer for ideas to circulate widely.

Bailey Diagonal structures Ural seminar 20/45



Kempthorne’s papers

Then my colleague Robin Thompson gave me a 1961 technical
report (long, but in typescript) by Oscar Kempthorne and his
colleagues in Ames. This developed essentially the same ideas
as Nelder’s: lattices of partitions using some of the partitions in
a Cartesian lattice (not necessarily with all coordinates having
the same number of values, for example, the rows and columns
of a rectangle).
Later I learnt that Kempthorne was furious that Nelder had
“stolen” his ideas. I believe that they simply developed them
independently, building on the work of Fisher and Yates. In
those days, it took much longer for ideas to circulate widely.

Bailey Diagonal structures Ural seminar 20/45



Putting the bits together

One morning, I came into work after drinking too much in the
pub the previous evening. I realised that my brain was not
capable of serious work, so I gave it the apparently simple task
of matching Nelder’s block structures with those of
Kempthorne. Slowly, I worked through dimensions 1, 2 and 3.

At the end of the day, I hit a problem.
For dimension 4, Nelder’s approach gave 15 possibilities,
but Kempthorne’s gave 16. I gave up and went home.
The next day, with a clear head, I realised that Kempthorne’s
approach always gives more possibilities than Nelder’s in
dimensions at least 4.
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Meeting Kempthorne

I worked on these ideas for some years, partly in collaboration
with Terry Speed. We used the Möbius function in some
formulae.

In June 1988 I attended a two-week research workshop at the
Institute for Mathematics and its Applications in Minneapolis,
USA. At the weekend, another participant, Jonathan Smith,
took me to Ames, so that I could have some meetings with
Kempthorne. Kempthorne was very friendly, and said that he
much appreciated my work, but

“This Möbius function really does the job. I wish that we
had known about it.”
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Chapter 3

Diagonal semilattices
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Starting work on diagonal structures

In 2018, Peter Cameron, Cheryl Praeger, Csaba Schneider and I
were in Shenzen, China, for a conference dedicated to Cheryl’s
70-th birthday. After the conference, CEP and CS showed us
something that they were working on that they thought would
interest us.

CEP and CS: This is about diagonal groups, permutation
groups and Cartesian decompositions.

PJC: I think it is about Hamming graphs.

RAB: I think it is about orthogonal block structures.

We started to collaborate, and two years later proved a lovely
theorem.
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Theorem about diagonal semilattices

Theorem
Let Q be a set of m + 1 partitions of the same set Ω, where m ≥ 2.
Suppose that every subset of m of the partitions in Q form the
minimal non-trivial partitions in a Cartesian lattice of dimension m.

(a) If m = 2 then there is a Latin square on Ω, unique up to
paratopism, such that Q = {R, C, L}.

(b) If m > 2 then there is a group G, unique up to group
isomorphism, such that Ω may be identified with Gm and the
partitions in Q are the right-coset partitions of the subgroups
G1, . . . , Gm, δ(G), where Gi has j-th entry 1 for all j 6= i, and
δ(G) is the diagonal subgroup {(g, g, . . . , g) : g ∈ G}.

A paratopism is any combination of permuting rows,
permuting columns, permuting symbols, and
interchanging the three partitions amongst themselves.
For m > 2, the combinatorial assumptions in the statement of
the theorem force the existence of a group.
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Hasse diagram for coset partitions in dimension 3
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uG1 uG2 uG3 uδ(G) = H

u
E
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uU

Each partition is uniform.

Each pair are compatible.

All suprema are included,

but not all infima.
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Comments

1. If the group G is not Abelian, then we cannot include all
infima without destroying compatibility.

2. In 1984, Danish statistician Tue Tjur pointed out that,
for statistical purposes, closure under suprema is more
important than closure under infima,
and that such closure does not destroy compatibility.
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Chapter 4

Diagonal graphs
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Hamming graphs

The Hamming graph H(m, n) has vertex set Am,
where A is a set of size n with n > 1;
two vertices are joined if they differ in exactly one coordinate.

Here is another way to think about this. The coordinates define
the minimal partitions in a Cartesian lattice. Two vertices are
joined if they are in the same part of any one of the minimal
partitions.
When n = 2, the Hamming graph can be thought of as the
m-dimensional cube. Now add an extra edge at each vertex,
joining it to the vertex which differs from it in all coordinates.
This graph is called the folded cube.
When m = 4 it is also called the Clebsch graph.
In recent work, Peter Cameron and I have generalized the
folded cube to larger values of n, using a diagonal semi-lattice.
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Defining a diagonal graph

Given a group G of order n, the diagonal graph ΓD(G, m) of
dimension m has vertex set Gm.

Let Q1, . . . , Qm be the the partitions defined by the appropriate
coordinates, and let Q0 be the coset partition of the diagonal
subgroup δ(G). Two distinct vertices are joined if they are in
the same part of any one of these m + 1 partitions.

If n = 2, this is the folded cube.

If m = 2, this is the Latin-square graph defined by the Cayley
table of G. This is a well-known strongly regular graph.
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Some basic properties of the diagonal graph ΓD(G, m)

I There are nm vertices.

I The valency is (m + 1)(n− 1).
I Except for n = m = 2, the clique number is n.
I ΓD(G1, m1) ∼= ΓD(G2, m2) ⇐⇒ m1 = m2 and G1

∼= G2.
I The diameter is equal to

m + 1−
⌈

m + 1
n

⌉
,

which is less than or equal to m,
with equality if and only if n ≥ m + 1.
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An example with m = 3 and n = 3

Let G = 〈x〉, where x3 = 1.

In G3, put a = (x, 1, 1), b = (1, x, 1) and c = (1, 1, x).
The diagonal semi-lattice has

minimal partitions Q0 Q1 Q2 Q3
cosets of 〈abc〉 〈a〉 〈b〉 〈c〉

Here are the vertices joined to vertex 1.

a2 a b2 b c c2 abc a2b2c2

1.

............
............
............
............
............
............
.

............
............

............
............

............
............

.

............................
............................

............................
............................

............................
............................

.........

............................
............................

............................
............................

............................
............................

.........

..............................................
..............................................

..............................................
..............................................

..............................................
..............................................

...............

............................................................
............................................................

............................................................
............................................................

............................................................
............................................................

................

..............................................
..............................................

..............................................
..............................................

..............................................
..............................................

...............

.................................................................
.................................................................

.................................................................
.................................................................

.................................................................
.................................................................

..............

a2b ab.

.................................................................................................................................................................. .

.................................................................................................................................................................. .

.............................................................................................................................................................................................................................................................................................................................................

......................................................................................................... .

..........................................................................................................

...........................................................................................................................................................................................................................

Vertices 1 and ab are at distance 2, and have 4 common
neighbours. Vertices 1 and a2b are at distance 2, and have
2 common neighbours. So the graph is not distance-regular.
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Eigenvalues of the adjacency matrix

For i = 0, 1, . . . , m, let Ai be the n× n matrix whose rows and
columns are indexed by elements of G with

Ai(α, β) =

{
1 if α and β are in the same part of Qi but α 6= β,
0 otherwise.

Then the adjacency matrix A of ΓD(G, m) is given by

A = A0 + A1 + · · ·+ Am.

Ai is the adjacency matrix of a graph which is nm−1 disjoint
copies of the complete graph Kn, one on each part of Qi.
So the eigenvalues of Ai are n− 1 and −1,
with corresponding eigenspaces VQi and V⊥Qi

and corresponding multiplicities nm−1 and nm−1(n− 1).
Hence each W-subspace is contained in an eigenspace of A.
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Eigenvalues of the adjacency matrix, continued

If Q is a partition in the diagonal semi-lattice,
put ρ(Q) = k if Q is the supremum of exactly k of the minimal
partitions Q0, Q1, . . . , Qm. Call ρ(Q) the rank of Q.

If ρ(Q) = k and v ∈ WQ then v is constant on precisely k of the
minimal partitions Q0, Q1, . . . , Qm. Hence the eigenvalue of A
on v is

k(n− 1) + (m + 1− k)(−1) = −(m + 1) + kn.

We know that, for partition P,

dim(VP) = nm−ρ(P) = ∑
P4Q

dim(WQ) = ∑
Q

ζ(P, Q)dim(WQ)

so Möbius inversion gives

dim(WQ) = ∑
P

µ(Q, P)nm−ρ(P).
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so Möbius inversion gives

dim(WQ) = ∑
P

µ(Q, P)nm−ρ(P).

Bailey Diagonal structures Ural seminar 34/45



Eigenvalues of the adjacency matrix, continued

If Q is a partition in the diagonal semi-lattice,
put ρ(Q) = k if Q is the supremum of exactly k of the minimal
partitions Q0, Q1, . . . , Qm. Call ρ(Q) the rank of Q.
If ρ(Q) = k and v ∈ WQ then v is constant on precisely k of the
minimal partitions Q0, Q1, . . . , Qm. Hence the eigenvalue of A
on v is

k(n− 1) + (m + 1− k)(−1) = −(m + 1) + kn.

We know that, for partition P,

dim(VP) = nm−ρ(P) = ∑
P4Q

dim(WQ) = ∑
Q

ζ(P, Q)dim(WQ)
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That Möbius inversion

We managed to prove the following for the diagonal
semi-lattice.

Theorem

µ(Q, P) =


(−1)ρ(P)−ρ(Q) if Q 4 P and P 6= U,
(−1)m−ρ(Q)(m− ρ(Q)) if P = U,
0 if Q 64 P.

Using this gives

dim(WQ) = n−1(n− 1)
[
(n− 1)m−ρ(Q) − (−1)m−ρ(Q)

]
if Q 6= U, while dim(WU) = 1.
There are m+1Ck partitions with rank k, if 0 ≤ k ≤ m− 1,
so the eigenvalue −(m + 1) + kn has multiplicity

m+1Ckn−1(n− 1)
[
(n− 1)m−k − (−1)m−k

]
.

This just leaves the subspace WU of constant vectors,
which has eigenvalue (m + 1)(n− 1) with multiplicity 1.
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That Möbius inversion

We managed to prove the following for the diagonal
semi-lattice.

Theorem

µ(Q, P) =


(−1)ρ(P)−ρ(Q) if Q 4 P and P 6= U,
(−1)m−ρ(Q)(m− ρ(Q)) if P = U,
0 if Q 64 P.

Using this gives

dim(WQ) = n−1(n− 1)
[
(n− 1)m−ρ(Q) − (−1)m−ρ(Q)

]
if Q 6= U, while dim(WU) = 1.
There are m+1Ck partitions with rank k, if 0 ≤ k ≤ m− 1,
so the eigenvalue −(m + 1) + kn has multiplicity

m+1Ckn−1(n− 1)
[
(n− 1)m−k − (−1)m−k

]
.

This just leaves the subspace WU of constant vectors,
which has eigenvalue (m + 1)(n− 1) with multiplicity 1.

Bailey Diagonal structures Ural seminar 35/45
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Chapter 5

. . . and beyond
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What next?

In 2020, Peter Cameron, Michael Kinyon, Cheryl Praeger and I
started to generalize the previous work to a collection of m + k
partitions, with m ≥ 2 and k ≥ 1.

Because we have done the
case k = 1, our assumption now is that Q is a set of m + k
partitions of the same set Ω, where m ≥ 2 and k ≥ 2, and that
every subset of m of the partitions in Q form the minimal
non-trivial partitions in a Cartesian lattice of dimension m.
When m = 2, this is precisely a collection of k mutually
orthogonal Latin squares (MOLS).
Any three of the partitions define a Latin square, so we have
k+2C3 such squares.
We found an interesting example with k = 2 and |Ω| = 82

where the four Latin squares are all Cayley tables of groups, but
those groups come from three different isomorphism classes.
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Mutually orthogonal diagonal semilattices

When m ≥ 3 it is tempting to use a term such as “Latin cube” or
“Latin hypercube”, but these have so many different meanings
in the literature that we decided on the following definition.

Definition
A set of k mutually orthogonal diagonal semilattices (MODS) of
order n is a collection Q1, . . . , Qm+k of partitions of a set Ω of
size nm with the property that any m of these partitions are the
minimal non-trivial partitions in a Cartesian lattice of
dimension m.
The previous result shows that any subset S of m + 1 of these
partitions defines a unique group GS such that the partitions
are the right-coset partitions of specified subgroups of Gm

S .
It seems obvious that the isomorphism type of GS should not
depend on S , but we have not been able to prove this yet.
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Regular mutually orthogonal diagonal semilattices

Let us call a set of MODS regular if the isomorphism type of GS
does not depend on S .

Theorem
If m ≥ 3 and k ≥ 2 then the unique (up to isomorphism) group G
defined by a regular set of MODS is Abelian. Furthermore, G admits
three fixed-point-free automorphisms whose product is the identity.
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Orthogonal arrays

If we reverse the partial order of refinement of partitions,
we get a dual concept.

Now the property is:
any m of these partitions are the maximal non-trivial partitions
in a Cartesian lattice of dimension m.
This is precisely the definition of
an orthogonal array of strength m and index 1,
a concept which has been studied by many people.
One way of construcing orthogonal arrays uses elementary
Abelian groups. Taking the dual of such a group (in the
algebraic sense) gives the dual concept in the partition sense,
which is what we want.
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Some subgroups of an elementary Abelian group

If p is prime and p ≥ 5 we can make a MODS with n = p3,
m = 3 and k = 2 by using some subgroups of an elementary
Abelian group of order p3.

〈a, b〉 〈a, c〉 〈b, c〉 〈a, bc〉 〈b, ac〉 〈a, b2c3〉〈b, ac3〉 〈ab, c〉 〈ab2, c〉〈a2b, bc2〉

〈c〉〈b〉〈a〉 〈abc〉 〈ab2c3〉

〈1〉

〈a, b, c〉

�
�
�
�

@
@

@
@

��
��

�
��

��

HH
HH

H
HH

HH

�
�
�
�

@
@
@
@

Q
Q

Q
Q

QQ

�
�
�
�

�
�
�
�

@
@
@
@

A
A
A
A

��
��
��

��
��
�

��
��

��
��

��
�

PP
PP

PP
PP

PP
P

.

............................................................................................................................................................................................................................................................................................................

...........................................................................................................................................................................................................................................................................................................@
@

@
@

PP
PP

PP
PP

PP
P

�
�
�
�

��
��

��
��

��
�

��
��

��
��

��
�

PP
PP

PP
PP

PP
P

�
�
�
�

HH
HH

H
HH

H

�
�

�
�

@
@
@
@

�
�
�
�

A
A
A
A

.

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

......... .

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

.........
.

...........................
...........................

...........................
...........................

...........................
...........................

...........................
...........................

...........................
...........................

...........................
...........................

...........................
...... .

...........................
...........................

...........................
...........................

...........................
...........................

...........................
...........................

...........................
...........................

...........................
...........................

...........................
......

.

.................................
.................................

.................................
.................................

.................................
.................................

.................................
.................................

.................................
.................................

.................................
.................................

.................................
.................................

... .

.................................
.................................

.................................
.................................

.................................
.................................

.................................
.................................

.................................
.................................

.................................
.................................

.................................
.................................

...

Bailey Diagonal structures Ural seminar 41/45



Another MODS

If p is prime and p ≥ 5 we can make a MODS with n = p4,
m = 4 and k = 2 by using some subgroups of an elementary
Abelian group of order p4.
If G = 〈a, b, c, d〉 then the six subgroups

〈a〉, 〈b〉, 〈c〉, 〈d〉, 〈abcd〉, 〈ab2c3d4〉

give the minimal partitions, any four of which generate a
Cartesian lattice by taking suprema.

Unfortunately, my slide is too narrow to contain the Hasse
diagram.
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MODS to graphs

We can construct a graph from a set of MODS in just the same
way that we do from a diagonal semi-lattice.

The vertices are the elements of the underlying set,
and two distinct vertices are joined by an edge if they are in the
same part of any of the minimal non-trivial partitions.
Eigenvalues, and their multiplicities, can be calculated in a
similar way as before.
We can use these results to obtain an upper bound for k.

Theorem
Let m ≥ 2 and n ≥ 2. If there is a set of MODS of dimension m with
m + k minimal non-trivial partitions on a set Ω of size nm, then
k ≤ n− 1.
When m = 2, this theorem specializes to the well-known upper
bound for the number of mutually orthogonal Latin squares of
order n.
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