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Let F be a finite field of q elements, and G be a transitive group on a finite set Ω.
Then there is a G-action on Ω, namely a map G × Ω −→ Ω, (g, w) 7→ wg = gw,
satisfying wgg′

= (gg′)w = g(g′w) for all g, g′ ∈ G and all w ∈ Ω, and that w1 =
1w = w for all w ∈ Ω. Let FΩ = {f | f : Ω −→ F}, be the vector space over F with
basis Ω. Extending the G-action on Ω linearly, FΩ becomes an FG-module called an
FG-permutation module. We are interested in finding all G-invariant FG-submodules,
i.e., codes in FΩ. The elements f ∈ FG are written in the form f =

∑
w∈Ω awχw

where χw is a characteristic function. The natural action of an element g ∈ G is given
by g(

∑
w∈Ω awχw) =

∑
w∈Ω awχg(w). This action of G preserves the natural bilinear

form defined by
⟨
∑
w∈Ω

awχw,
∑
w∈Ω

bwχw⟩ =
∑
w∈Ω

awbw.

There appear slightly different concepts of (linear) codes in the literature. A code
over some finite field F will be a triple (V,Ω, F ), where V = FΩ is a free FG-module
of finite rank with basis Ω and a submodule C. By convention we call C a code having
ambient space V and ambient basis Ω. F is the alphabet of the code C, the degree n of
V its length, and C is an [n, k]-code if C is free of rank k.

In the talk we introduce and discuss an elementary tool from representation theory
of finite groups for constructing linear codes invariant under a given permutation group
G. The tool gives theoretical insight as well as a recipe for computations of genera-
tor matrices and weight distributions. In some interesting cases a classification of code
vectors under the action of G can be obtained. As explicit examples we examine binary
codes related to the 2-modular reduction of the Leech lattice and Conway groups.


