The structure of finite groups with restrictions on the set of conjugacy classes sizes

Ilya Gorshkov

22.11.2022

Ilya Gorshkov

Let G be a finite group,

Z(G) be its center.

 $x \in G$, $C_G(x)$ denotes the centralizer of x in G.

 x^{G} denotes the conjugacy class in G containing x.

 $Ind(H, x) = |H|/|C_H(x)|.$

N(G) denotes the set of conjugacy classes sizes of G.

William Burnside, 1904

Let p be a prime, G be a finite group. If there exists $x \in G$ such that $Ind(G, x) = p^{\alpha}$, then G is not simple.

Ilya Gorshkov

William Burnside, 1904

Let p be a prime, G be a finite group. If there exists $x \in G$ such that $Ind(G, x) = p^{\alpha}$, then G is not simple.

Lev Kazarin, 1990

Let G be a (not necessarily finite) group, $x \in G$ and $Ind(G, x) = p^{\alpha}$, where p is a prime. Then $\langle x^G \rangle$ is a solvable subgroup of G.

Let p be a prime, n be a natural number

 n_p be the greatest power of p dividing n.

For a set of primes π we will denote $n_{\pi} = \prod_{p \in \pi} n_p$.

Let $|G||_p$ be a number p^n such that N(G) contains α such that p^n divides α and p^{n+1} does not divide any elements from N(G).

For a set of primes π put $|G||_{\pi} = \prod_{p \in \pi} |G||_p$.

Definition (I.G. 2022)

Let *p* be a prime. We say that a group *G* satisfies the condition R(p) or *G* is *p*-index extremal group and write $G \in R(p)$ if $a_p \in \{1, |G||_p\}$ for each $a \in N(G)$ and $|G||_p > 1$.

Ilya Gorshkov

$Alt_n \in R(p)$ for each prime n/2 .

 $L_n(q) \in R(t)$ where t is a primitive prime divisor of $q^n - 1$.

Ilya Gorshkov

Definition

Let $G \in R(p)$. (i) $G \in R(p)^*$ if G contains a p-element h such that $Ind(G,h)_p > 1$; (ii) $G \in R(p)^{**}$ if $Ind(G,h)_p = 1$ for each p-element $h \in G$.

Ilya Gorshkov

A. Camina, 1972

If $N(G) = \{1, p^m\} \times \{1, q^n\}$, where p and q are distinct primes, then G is nilpotent, in particular, $G = P \times Q$ for a Sylow p-subgroup P and a Sylow q-subgroup Q.

A. Camina, 1972

If $N(G) = \{1, p^m\} \times \{1, q^n\}$, where p and q are distinct primes, then G is nilpotent, in particular, $G = P \times Q$ for a Sylow p-subgroup P and a Sylow q-subgroup Q.

A. Beltran, M.J. Felipe, 2006

If $N(G) = \{1, m\} \times \{1, n\}$, where *m* and *n* are positive coprime integers, then *G* is nilpotent and $n = p^a$ and $m = q^b$ for some distinct primes *p* and *q*.

C. Casolo, E. M. Tombari, 2012

Let $p_1^{m_1}, p_2^{m_2}, ..., p_k^{m_k}$ be powers of distinct primes, and let *G* be a group with $N(G) = \{1, p_1^{m_1}\} \times \{1, p_2^{m_2}\} \times ... \times \{1, p_k^{m_k}\}$. Then *G* is nilpotent.

C. Casolo, E. M. Tombari, 2012

Let $p_1^{m_1}, p_2^{m_2}, ..., p_k^{m_k}$ be powers of distinct primes, and let *G* be a group with $N(G) = \{1, p_1^{m_1}\} \times \{1, p_2^{m_2}\} \times ... \times \{1, p_k^{m_k}\}$. Then *G* is nilpotent.

C. Casolo, E. M. Tombari, 2012

Let $\{p_1^{m_1}, ..., p_k^{m_k}\} \subseteq N(G) \subseteq \{1, p_1^{m_1}\} \times \{1, p_2^{m_2}\} \times ... \times \{1, p_k^{m_k}\}.$ Then G is solvable.

C. Shao, Q. Jiang, 2020

Let further m_1 , m_2 , m_3 be three positive integers such that m_1 and m_2 do not divide each other and m_1m_2 is coprime to m_3 . If $N(G) = \{1, m_1, m_2\} \times \{1, m_3\}$, then $G \simeq A \times B$, where A and B are such that (a) A is a quasi-Frobenius group with abelian kernel and complement with $N(A) = \{1, m_1, m_2\}$; (b) $N(B) = \{1, m_3\}$ and m_3 is a prime power. In particular, G is solvable.

Definition

Given $\Theta \subseteq \mathbb{N}, |\Theta| < \infty$, define the directed graph $\Gamma(\Theta)$, with the vertex set Θ and where \overrightarrow{ab} is an edge whenever a divides b. Put $\Gamma(G) = \Gamma(N(G) \setminus \{1\})$.

Ilya Gorshkov

I.G. 2022

Let Ω be a set of integers and $\Gamma(\Omega \setminus \{1\})$ be disconnected, *n* be such that $gcd(n, \alpha) = 1$ for each $\alpha \in \Omega \setminus \{1\}$. Let *G* be a finite group such that $N(G) = \Omega \times \{1, n\}$. Then $G \simeq A \times B$, where $N(A) = \Omega$, $N(B) = \{1, n\}$ and *n* is a power of prime.

I.G., 2022 (MAIN THEOREM OF THIS TALK)

If $G \in R(p)^*$, then G has a normal p-complement.

Ilya Gorshkov

I.G., 2022

If
$$G \in R(p)^*$$
 and $P \in Syl_p(G)$, then $Z(P) \leq Z(G)$.

A. Vasil'ev, 2009

If G is a group with trivial center and $|G||_p = p$, then Sylow *p*-subgroups of G are abelian.

I.G., 2022

If $G \in R(p)$ and Z(G) = 1, then Sylow *p*-subgroups of *G* are abelian.

Let G be a counterexample for assertion of the theorem of minimal order.

Lemma 3.1
$$O_{p'}(G) = 1$$

Lemma 3.3

Each minimal normal subgroup of G is a p-group.

Proof.

1. $Soc(G) = S \times H$ where S is a simple and H is a p-group.

2.
$$S \in R(p)^{**}$$
.

3. By enumeration of all simple groups, I got that S is trivial.

Sketch of the proof of the main theorem

Let
$$O = O_p(G)$$
.

Lemmas 3.7 and 3.8

G/O is a simple group and p is a connected component of GK(G/O).

Lemma 3.9

G/O is trivial.

End of proof.

Question 1.

Describe the structure of p-index extremal groups G with a trivial center, in which a Sylow p-subgroup is not cyclic.

Question 1.

Describe the structure of p-index extremal groups G with a trivial center, in which a Sylow p-subgroup is not cyclic.

Question 2.

Describe the structure of the normal *p*-complement of a group $G \in R(p)^*$.

Question 1.

Describe the structure of p-index extremal groups G with a trivial center, in which a Sylow p-subgroup is not cyclic.

Question 2.

Describe the structure of the normal *p*-complement of a group $G \in R(p)^*$.

I.G. 2022

If $G \in R(p)^{**}$, then G contains at most one non-Abelian composition factor S whose order is divisible by p.

Question 3.

Let $G \in R(p)^{**}$ and S be a non-Abelian composition factor of G whose order is divisible by p. Is it true that G is a semi direct product of a normal subgroup isomorphic to S and some p'-subgroup?

Ilya Gorshkov