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Definitions

Let G be a finite group,

Z (G ) be its center.

x ∈ G , CG (x) denotes the centralizer of x in G .

xG denotes the conjugacy class in G containing x .

Ind(H, x) = |H|/|CH(x)|.

N(G ) denotes the set of conjugacy classes sizes of G .
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William Burnside, 1904
Let p be a prime, G be a finite group. If there exists x ∈ G such
that Ind(G , x) = pα, then G is not simple.

Lev Kazarin, 1990
Let G be a (not necessarily finite) group, x ∈ G and
Ind(G , x) = pα, where p is a prime. Then ⟨xG ⟩ is a solvable
subgroup of G .
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Definitions

Let p be a prime, n be a natural number

np be the greatest power of p dividing n.

For a set of primes π we will denote nπ =
∏

p∈π np.

Let |G ||p be a number pn such that N(G ) contains α such that pn

divides α and pn+1 does not divide any elements from N(G ).

For a set of primes π put |G ||π =
∏

p∈π |G ||p.
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p-index extremal groups

Definition (I.G. 2022)

Let p be a prime. We say that a group G satisfies the condition
R(p) or G is p-index extremal group and write G ∈ R(p) if
ap ∈ {1, |G ||p} for each a ∈ N(G ) and |G ||p > 1.
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Examples

Altn ∈ R(p) for each prime n/2 < p ≤ n.

Ln(q) ∈ R(t) where t is a primitive prime divisor of qn − 1.
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p-exremal groups

Definition
Let G ∈ R(p).
(i) G ∈ R(p)∗ if G contains a p-element h such that

Ind(G , h)p > 1;
(ii) G ∈ R(p)∗∗ if Ind(G , h)p = 1 for each p-element h ∈ G .
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A. Camina, 1972
If N(G ) = {1, pm} × {1, qn}, where p and q are distinct primes,
then G is nilpotent, in particular, G = P × Q for a Sylow
p-subgroup P and a Sylow q-subgroup Q.

A. Beltran, M.J. Felipe, 2006

If N(G ) = {1,m} × {1, n}, where m and n are positive coprime
integers, then G is nilpotent and n = pa and m = qb for some
distinct primes p and q.
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C. Casolo, E. M. Tombari, 2012

Let pm1
1 , pm2

2 , ..., pmk
k be powers of distinct primes, and let G be a

group with N(G ) = {1, pm1
1 }× {1, pm2

2 }× ...×{1, pmk
k }. Then G is

nilpotent.

C. Casolo, E. M. Tombari, 2012

Let {pm1
1 , ..., pmk

k } ⊆ N(G ) ⊆ {1, pm1
1 } × {1, pm2

2 } × ...× {1, pmk
k }.

Then G is solvable.
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C. Shao, Q. Jiang, 2020
Let further m1, m2, m3 be three positive integers such that m1 and
m2 do not divide each other and m1m2 is coprime to m3. If
N(G ) = {1,m1,m2} × {1,m3}, then G ≃ A× B , where A and B
are such that
(a) A is a quasi-Frobenius group with abelian kernel and
complement with N(A) = {1,m1,m2};
(b) N(B) = {1,m3} and m3 is a prime power.
In particular, G is solvable.
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Definition
Given Θ ⊆ N, |Θ| < ∞, define the directed graph Γ(Θ), with the
vertex set Θ and where

−→
ab is an edge whenever a divides b. Put

Γ(G ) = Γ(N(G ) \ {1}).
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I.G. 2022
Let Ω be a set of integers and Γ(Ω \ {1}) be disconnected, n be
such that gcd(n, α) = 1 for each α ∈ Ω \ {1}. Let G be a finite
group such that N(G ) = Ω× {1, n}. Then G ≃ A× B , where
N(A) = Ω, N(B) = {1, n} and n is a power of prime.
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I.G., 2022 (MAIN THEOREM OF THIS TALK)

If G ∈ R(p)∗, then G has a normal p-complement.
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Corollaries

I.G., 2022
If G ∈ R(p)∗ and P ∈ Sylp(G ), then Z (P) ≤ Z (G ).

A. Vasil’ev, 2009
If G is a group with trivial center and |G ||p = p, then Sylow
p-subgroups of G are abelian.

I.G., 2022
If G ∈ R(p) and Z (G ) = 1, then Sylow p-subgroups of G are
abelian.
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Sketch of the proof of the main theorem

Let G be a counterexample for assertion of the theorem of minimal
order.

Lemma 3.1
Op′(G ) = 1

Lemma 3.3
Each minimal normal subgroup of G is a p-group.

Proof.
1. Soc(G ) = S × H where S is a simple and H is a p-group.
2. S ∈ R(p)∗∗.
3. By enumeration of all simple groups, I got that S is trivial.
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Sketch of the proof of the main theorem

Let O = Op(G ).

Lemmas 3.7 and 3.8
G/O is a simple group and p is a connected component of
GK (G/O).

Lemma 3.9
G/O is trivial.

End of proof.
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Question

Question 1.
Describe the structure of p-index extremal groups G with a trivial
center, in which a Sylow p-subgroup is not cyclic.

Question 2.
Describe the structure of the normal p-complement of a group
G ∈ R(p)∗.

I.G. 2022
If G ∈ R(p)∗∗, then G contains at most one non-Abelian
composition factor S whose order is divisible by p.

Question 3.
Let G ∈ R(p)∗∗ and S be a non-Abelian composition factor of G
whose order is divisible by p. Is it true that G is a semi direct
product of a normal subgroup isomorphic to S and some
p′-subgroup?
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