NONCOPRIME FIXED POINT FREE ACTION OF A NILPOTENT GROUP

GÜLİN ERCAN

Ural Seminar on Group Theory and Combinatorics Yekaterinburg 23 May 2023 Throughout all groups are finite.

Question

Let A act on G by automorphisms. How does the nature of the action of A influence the structure of both A and G?

Definition

An element $g \in G$ is called a fixed point of A in G if $g^a = g$ holds for all $a \in A$.

 $C_G(A) = \{g \in G : g^a = g \text{ holds for all } a \in A\} = \bigcap_{a \in A} C_G(a)$ is the set of all fixed points of A in G called the fixed point subgroup.

We call the action FIXED POINT FREE whenever $C_G(A) = 1$.

Definition

An element $g \in G$ is called a fixed point of A in G if $g^a = g$ holds for all $a \in A$.

 $C_G(A) = \{g \in G : g^a = g \text{ holds for all } a \in A\} = \bigcap_{a \in A} C_G(a)$ is the set of all fixed points of A in G called the fixed point subgroup.

We call the action FIXED POINT FREE whenever $C_G(A) = 1$.

Definition

An element $g \in G$ is called a fixed point of A in G if $g^a = g$ holds for all $a \in A$.

 $C_G(A) = \{g \in G : g^a = g \text{ holds for all } a \in A\} = \bigcap_{a \in A} C_G(a)$ is the set of all fixed points of A in G called the fixed point subgroup.

We call the action FIXED POINT FREE whenever $C_G(A) = 1$.

Problems of finding some bounds for the invariants of a solvable group, like the derived length, p-length, Fitting length by using the known information about the group.

(started by Hall-Higman in 1956)

We essentially focus on some conjectures belonging to length type problems in the theory of finite groups.

* P. Hall and G. Higman, *On the p-length of p-soluble groups and reduction theorems for Burnside's problem.* Proc. Math. London Soc. (3) 6 (1956) 1-24.

Problems of finding some bounds for the invariants of a solvable group, like the derived length, p-length, Fitting length by using the known information about the group.

(started by Hall-Higman in 1956)

We essentially focus on some conjectures belonging to length type problems in the theory of finite groups.

* P. Hall and G. Higman, *On the p-length of p-soluble groups and reduction theorems for Burnside's problem.* Proc. Math. London Soc. (3) 6 (1956) 1-24.

 $\begin{array}{ll} \textit{Define} & F_0(G) := \langle 1 \rangle \\ & F_1(G) := F(G) \\ F_i(G)/F_{i-1}(G) := F\left(G/F_{i-1}(G)\right) & \textit{for } i > 1. \end{array}$

For a nontrivial solvable G, F(G) is also nontrivial and therefore, there exists a smallest positive integer n such that $G = F_n(G)$.

 $\begin{array}{ll} \textit{Define} & F_0(G) := \langle 1 \rangle \\ & F_1(G) := F(G) \\ F_i(G) / F_{i-1}(G) := F\left(G / F_{i-1}(G)\right) & \textit{for } i > 1. \end{array}$

For a nontrivial solvable G, F(G) is also nontrivial and therefore, there exists a smallest positive integer n such that $G = F_n(G)$.

$\begin{array}{ll} \textit{Define} & F_0(G) := \langle 1 \rangle \\ & F_1(G) := F(G) \\ F_i(G)/F_{i-1}(G) := F\left(G/F_{i-1}(G)\right) & \textit{ for } i > 1. \end{array}$

For a nontrivial solvable G, F(G) is also nontrivial and therefore, there exists a smallest positive integer n such that $G = F_n(G)$.

$\begin{array}{ll} \textit{Define} & F_0(G) := \langle 1 \rangle \\ & F_1(G) := F(G) \\ F_i(G)/F_{i-1}(G) := F\left(G/F_{i-1}(G)\right) & \textit{ for } i > 1. \end{array}$

For a nontrivial solvable G, F(G) is also nontrivial and therefore, there exists a smallest positive integer n such that $G = F_n(G)$.

 $\begin{array}{lll} \textit{Define} & F_0(G) := \langle 1 \rangle \\ & F_1(G) := F(G) \\ F_i(G)/F_{i-1}(G) := F\left(G/F_{i-1}(G)\right) & \textit{ for } i > 1. \end{array}$

For a nontrivial solvable G, F(G) is also nontrivial and therefore, there exists a smallest positive integer n such that $G = F_n(G)$.

Carter subgroups and Fitting lengths

Definition

Any nilpotent self-normalizing subgroup of a solvable group is called a Carter subgroup.

Let $\ell(C)$ denote the number of primes, counted with multiplicities, dividing |C|.

(Thompson's conjecture) Let C be a Carter subgroup of the solvable group H. Then $h(H) \leq f(\ell(C))$ for some function f.

Dade established this conjecture in 1969 by proving that

Theorem

Let C be a Carter subgroup of the solvable group H. Then

 $h(H) \le 10(2^{\ell(C)} - 1) - 4\ell(C).$

* E. C. Dade, Carter subgroups and Fitting heights of finite solve solvable groups, Illinois J. Math 13 (1969) 449-513.

Carter subgroups and Fitting lengths

Definition

Any nilpotent self-normalizing subgroup of a solvable group is called a Carter subgroup.

Let $\ell(C)$ denote the number of primes, counted with multiplicities, dividing |C|.

(Thompson's conjecture) Let C be a Carter subgroup of the solvable group H. Then $h(H) \leq f(\ell(C))$ for some function f.

Dade established this conjecture in 1969 by proving that

Theorem

Let C be a Carter subgroup of the solvable group H. Then

 $h(H) \le 10(2^{\ell(C)} - 1) - 4\ell(C).$

* E. C. Dade, Carter subgroups and Fitting heights of finite solve solvable groups, Illinois J. Math 13 (1969) 449-513.

Carter subgroups and Fitting lengths

Definition

Any nilpotent self-normalizing subgroup of a solvable group is called a Carter subgroup.

Let $\ell(C)$ denote the number of primes, counted with multiplicities, dividing |C|.

(Thompson's conjecture) Let C be a Carter subgroup of the solvable group H. Then $h(H) \leq f(\ell(C))$ for some function f.

Dade established this conjecture in 1969 by proving that

Theorem

Let C be a Carter subgroup of the solvable group H. Then

$$h(H) \le 10(2^{\ell(C)} - 1) - 4\ell(C).$$

* E. C. Dade, Carter subgroups and Fitting heights of finite solvable groups, Illinois J. Math 13 (1969) 449-513.

Let H be a solvable group whose Carter subgroups have a normal complement H. If C is a Carter subgoup of H, then

 $h(H) \le 5(2^{\ell(C)} - 1).$

Remark

Let A be a nilpotent group acting on the solvable group G fixed point freely. Then

A is a Carter subgroup of the semidirect product $H = G \rtimes A$ with normal complement G, because $[A, N_G(A)] \leq A \cap N_G(A) = 1$ and so $N_H(A) = C_G(A)A = A$.

Furthermore, A acts fixed point freely on any A-invariant section U of G since A is also Carter subgroup of the semidirect product UA.

Let H be a solvable group whose Carter subgroups have a normal complement H. If C is a Carter subgoup of H, then

 $h(H) \le 5(2^{\ell(C)} - 1).$

Remark

Let A be a nilpotent group acting on the solvable group G fixed point freely. Then

A is a Carter subgroup of the semidirect product $H = G \rtimes A$ with normal complement G, because $[A, N_G(A)] \leq A \cap N_G(A) = 1$ and so $N_H(A) = C_G(A)A = A$.

Furthermore, A acts fixed point freely on any A-invariant section U of G since A is also Carter subgroup of the semidirect product UA.

Hence as a corollary of Dade's theorem above we have

Theorem

Let A be a nilpotent group acting on the solvable group G fixed point freely. Then

$$h(G) \le 5(2^{\ell(A)} - 1).$$

Let H be a solvable group whose Carter subgroups have a normal complement G. If C is a Carter subgroup of H, then there is a linear function f such that

 $h(H) \le f(\ell(C)).$

Correspondingly,

Let A be a nilpotent group acting fixed point freely on the solvable group G. Then there is a linear function f such that

 $h(G) \le f(\ell(A)).$

Let G be a group and A a group acting on G by automorphisms. We call the action of A on G

- a coprime action when (|G|, |A|) = 1
- a noncoprime action when $(|G|, |A|) \neq 1$ is allowed.

Under coprime action, there are some useful relations between G and A, which are not valid in general. That is why the coprime action is mostly studied.

Let G be a group and A a group acting on G by automorphisms. We call the action of A on G

- a coprime action when (|G|, |A|) = 1
- a noncoprime action when $(|G|, |A|) \neq 1$ is allowed.

Under coprime action, there are some useful relations between G and A, which are not valid in general. That is why the coprime action is mostly studied.

Let G be a group and A a group acting on G by automorphisms. We call the action of A on G

- a coprime action when (|G|, |A|) = 1
- a noncoprime action when $(|G|, |A|) \neq 1$ is allowed.

Under coprime action, there are some useful relations between G and A, which are not valid in general. That is why the coprime action is mostly studied.

• $C_{G/N}(A) = C_G(A)N/N$ for every A-invariant normal subgroup N of G.

• $G = [G, A]C_G(A)$ (Here $[G, A] = \langle g^{-1}g^a : g \in G, a \in A \rangle$ and

- $\bullet \quad [G,A] = [G,A,A]$
- There exists an A-invariant Sylow subgroup of G for every prime dividing the order of G.

• $C_{G/N}(A) = C_G(A)N/N$ for every A-invariant normal subgroup N of G.

• $G = [G, A]C_G(A)$ (Here $[G, A] = \left\langle g^{-1}g^a : g \in G, a \in A \right\rangle$ and

 $\bullet \quad [G,A] = [G,A,A]$

• There exists an A-invariant Sylow subgroup of G for every prime dividing the order of G.

• $C_{G/N}(A) = C_G(A)N/N$ for every A-invariant normal subgroup N of G.

•
$$G = [G, A]C_G(A)$$

(Here $[G, A] = \left\langle g^{-1}g^a : g \in G, a \in A \right\rangle$ and

- $\bullet \quad [G,A] = [G,A,A]$
- There exists an A-invariant Sylow subgroup of G for every prime dividing the order of G.

• $C_{G/N}(A) = C_G(A)N/N$ for every A-invariant normal subgroup N of G.

•
$$G = [G, A]C_G(A)$$

(Here $[G, A] = \langle g^{-1}g^a : g \in G, a \in A \rangle$ and

- $\bullet \quad [G,A] = [G,A,A]$
- There exists an A-invariant Sylow subgroup of G for every prime dividing the order of G.

Glauberman's lemma

Let A act coprimely on the group G. Suppose that A and G each act on a nonempty set Ω . Assume further that the semidirect product $G \rtimes A$ acts on Ω and that G is transitive on Ω . Then (a) there exists an A-invariant element $w \in \Omega$, (b) if $u, w \in \Omega$ are A-invariant, then there is $c \in C_G(A)$ such that u.c = w.

Schur-Zassenhauss theorem: Let $N \triangleleft G$ be such that (|N|, |G/N|) = 1. Then there exists $L \leq G$ such that G = NL and $N \cap L = 1$.

Glauberman's lemma

Let A act coprimely on the group G. Suppose that A and G each act on a nonempty set Ω . Assume further that the semidirect product $G \rtimes A$ acts on Ω and that G is transitive on Ω . Then (a) there exists an A-invariant element $w \in \Omega$, (b) if $u, w \in \Omega$ are A-invariant, then there is $c \in C_G(A)$ such that u.c = w.

Schur-Zassenhauss theorem: Let $N \triangleleft G$ be such that (|N|, |G/N|) = 1. Then there exists $L \leq G$ such that G = NL and $N \cap L = 1$.

Some best possible bounds on nilpotent lengths under coprime action

Theorem

Let A and G be both solvable. If A acts coprimely on G then

 $h(G) \le h(C_G(A)) + 2\ell(A)$

and this bound is the best possible.

* A. Turull, *Fitting height of groups and of fixed points,* J. Algebra 86 (1984) 555-566.

Some best possible bounds on Fitting lengths under coprime action

Theorem

(Turull, 1990) Let A act coprimely on the solvable group G. Suppose that every proper subgroup of A acts with regular orbits, that is, for every proper subgroup B of A and every B-invariant section S of G such that B acts irreducibly on S there exists $v \in S$ such that $C_B(v) = C_B(S)$. Then

 $h(G) \le \ell(C_G(A)) + \ell(A)$

and this bound is the best possible.

* A. Turull, *Groups of automorphisms and centralizers.* Math. Proc. Cambridge Philos. Soc. 107 (1990) 227-238.

Fixed point free coprime action

Theorem

Let A act fixed point freely on G where |A| = 2. Then G is an abelian group of odd order.

Theorem

Let A act fixed point freely on G where |A| = 3. Then G is a nilpotent group of class ≤ 2 .

Frobenius' Conjecture

Let A act on G fixed point freely. If |A| is a prime, then G is solvable and nilpotent, that is, h(G) = 1. (proven by Thompson in 1959).

* J. G. Thompson, *Finite groups with fixed-point-free automorphisms of prime order*, Proc. Nat. Acad. Sci. 45 (1959) 578-581.

Fixed point free coprime action

Theorem

Let A act fixed point freely on G where |A| = 2. Then G is an abelian group of odd order.

Theorem

Let A act fixed point freely on G where |A| = 3. Then G is a nilpotent group of class ≤ 2 .

Frobenius' Conjecture

Let A act on G fixed point freely. If |A| is a prime, then G is solvable and nilpotent, that is, h(G) = 1. (proven by Thompson in 1959).

* J. G. Thompson, *Finite groups with fixed-point-free automorphisms of prime order*, Proc. Nat. Acad. Sci. 45 (1959) 578-581.

Fixed point free coprime action

Theorem

Let A act fixed point freely on G where |A| = 2. Then G is an abelian group of odd order.

Theorem

Let A act fixed point freely on G where |A| = 3. Then G is a nilpotent group of class ≤ 2 .

Frobenius' Conjecture

Let A act on G fixed point freely. If |A| is a prime, then G is solvable and nilpotent, that is, h(G) = 1. (proven by Thompson in 1959).

* J. G. Thompson, *Finite groups with fixed-point-free automorphisms of prime order*, Proc. Nat. Acad. Sci. 45 (1959) 578-581.

Let A be a group acting fixed point freely and coprimely on the group G. Then G is solvable.

*P. Rowley, *Finite groups admitting a fixed point free automorphism group.* J. Algebra 174 (1995) 724-727.

Remark

- By Turull's first result, if A is solvable and A acts on G coprimely and fixed point freely then $h(G) \leq 2\ell(A)$.
- For each A, there is a solvable G such that A acts coprimely and fixed point freely on G and $h(G) = \ell(A)$. Thus the second result of Turull gives the best possible bound under the above assumptions.

Let A be a group acting fixed point freely and coprimely on the group G. Then G is solvable.

*P. Rowley, *Finite groups admitting a fixed point free automorphism group.* J. Algebra 174 (1995) 724-727.

Remark

- By Turull's first result, if A is solvable and A acts on G coprimely and fixed point freely then $h(G) \leq 2\ell(A)$.
- For each A, there is a solvable G such that A acts coprimely and fixed point freely on G and $h(G) = \ell(A)$. Thus the second result of Turull gives the best possible bound under the above assumptions.

Let A be a group acting fixed point freely and coprimely on the group G. Then G is solvable.

*P. Rowley, *Finite groups admitting a fixed point free automorphism group.* J. Algebra 174 (1995) 724-727.

Remark

- By Turull's first result, if A is solvable and A acts on G coprimely and fixed point freely then $h(G) \leq 2\ell(A)$.
- For each A, there is a solvable G such that A acts coprimely and fixed point freely on G and $h(G) = \ell(A)$. Thus the second result of Turull gives the best possible bound under the above assumptions.

Conjecture

Let A be a group acting fixed point freely and coprimely on the group G. Then

- T. Berger
- E. Shult
- H. Kurzweil
- A. Feldman

Theorem

Let A be a nilpotent group acting fixed point freely on the group G. Then G is solvable.

*V. V. Belyaev and B. Hartley, *Centralizers of finite nilpotent subgroups in locally finite groups*, Algebra and Logic 35 (1996) 217-228.

RECALL: Dade proved the following.

Theorem

Let a nilpotent group A act fixed point freely on the group G. Then

 $h(G) \le 5(2^{\ell(A)} - 1).$

and he conjectured that there is a linear function f such that $h(G) \leq f(\ell(A))$. No linear bound is known.

Theorem

Let A be a nilpotent group acting fixed point freely on the group G. Then G is solvable.

*V. V. Belyaev and B. Hartley, *Centralizers of finite nilpotent subgroups in locally finite groups*, Algebra and Logic 35 (1996) 217-228.

RECALL: Dade proved the following.

Theorem

Let a nilpotent group A act fixed point freely on the group G. Then

$$h(G) \le 5(2^{\ell(A)} - 1).$$

and he conjectured that there is a linear function f such that $h(G) \leq f(\ell(A))$. No linear bound is known.

イロト 不得 トイヨト イヨト 二日

Theorem

Let A be a nilpotent group acting fixed point freely on the group G. Then G is solvable.

*V. V. Belyaev and B. Hartley, *Centralizers of finite nilpotent subgroups in locally finite groups*, Algebra and Logic 35 (1996) 217-228.

RECALL: Dade proved the following.

Theorem

Let a nilpotent group A act fixed point freely on the group G. Then

$$h(G) \le 5(2^{\ell(A)} - 1).$$

and he conjectured that there is a linear function f such that $h(G) \leq f(\ell(A)).$ No linear bound is known.

40 / 71

Theorem

Let A be a nilpotent group acting fixed point freely on the group G. Then G is solvable.

*V. V. Belyaev and B. Hartley, *Centralizers of finite nilpotent subgroups in locally finite groups*, Algebra and Logic 35 (1996) 217-228.

RECALL: Dade proved the following.

Theorem

Let a nilpotent group A act fixed point freely on the group G. Then

$$h(G) \le 5(2^{\ell(A)} - 1).$$

and he conjectured that there is a linear function f such that $h(G) \leq f(\ell(A)).$ No linear bound is known.

Turull, 1995

Let an abelian group A of squarefree exponent act fixed point freely on the group G. Then $h(G) \leq 5\ell(A)$

Ercan, Güloğlu -2008, 2009

Let a group A act on the group G fixed point freely. If |A| is coprime to 6 and the Sylow 2-subgroups of G are abelian, then

- $h(G) \leq 2^{\ell(A)} 1$, when A is nilpotent
- $h(G) \leq 2^{\ell(A)} \ell(A) 1$, when A is abelian .

Jabara-2018

Turull, 1995

Let an abelian group A of squarefree exponent act fixed point freely on the group G. Then $h(G) \leq 5\ell(A)$

Ercan, Güloğlu -2008, 2009

Let a group A act on the group G fixed point freely. If |A| is coprime to 6 and the Sylow 2-subgroups of G are abelian, then

• $h(G) \leq 2^{\ell(A)} - 1$, when A is nilpotent

• $h(G) \leq 2^{\ell(A)} - \ell(A) - 1$, when A is abelian .

Jabara-2018

Turull, 1995

Let an abelian group A of squarefree exponent act fixed point freely on the group G. Then $h(G) \leq 5\ell(A)$

Ercan, Güloğlu -2008, 2009

Let a group A act on the group G fixed point freely. If |A| is coprime to 6 and the Sylow 2-subgroups of G are abelian, then

- $h(G) \leq 2^{\ell(A)} 1$, when A is nilpotent
- $h(G) \leq 2^{\ell(A)} \ell(A) 1$, when A is abelian .

Jabara-2018

Turull, 1995

Let an abelian group A of squarefree exponent act fixed point freely on the group G. Then $h(G) \leq 5\ell(A)$

Ercan, Güloğlu -2008, 2009

Let a group A act on the group G fixed point freely. If |A| is coprime to 6 and the Sylow 2-subgroups of G are abelian, then

- $h(G) \leq 2^{\ell(A)} 1$, when A is nilpotent
- $h(G) \leq 2^{\ell(A)} \ell(A) 1$, when A is abelian .

Jabara-2018

* A. Turull, *Character theory and length problems*, Finite and locally finite groups (Istanbul 1994), 377-400, Nato Adv.Sci.Inst.Ser.C 471 Kluwer Acad.Publ. 1995.

* G. Ercan and İ. Ş. Güloğlu, *Fixed point free action on groups of odd order*, J. Algebra 320 (1) (2008) 426-436.

* E. Jabara, *The Fitting length of finite soluble groups II: Fixed point free automorphisms*, J. Algebra 487 (2017) 161-172.

Given nonnilpotent A and a positive integer k. Then there is a solvable G such that A acts fixed point freely and noncoprimely on G, and $h(G) \ge k$.

* S. D. Bell and B. Hartley, *A note on fixed point free actions of finite groups*, Quart. T. Math. Oxford (2) 41 (1990) 127-130.

Conjecture

Let a nilpotent group A act on the group G fixed point freely. Then

Given nonnilpotent A and a positive integer k. Then there is a solvable G such that A acts fixed point freely and noncoprimely on G, and $h(G) \ge k$.

* S. D. Bell and B. Hartley, A note on fixed point free actions of finite groups, Quart. T. Math. Oxford (2) 41 (1990) 127-130.

Conjecture

Let a nilpotent group A act on the group G fixed point freely. Then

Given nonnilpotent A and a positive integer k. Then there is a solvable G such that A acts fixed point freely and noncoprimely on G, and $h(G) \ge k$.

* S. D. Bell and B. Hartley, A note on fixed point free actions of finite groups, Quart. T. Math. Oxford (2) 41 (1990) 127-130.

Conjecture

Let a nilpotent group A act on the group G fixed point freely. Then

In 1987, C. Kei-Nah established this conjecture when A is cyclic of order pq for primes p,q.

- A is cyclic of order pqr for pairwise distinct primes p, q, r
- A is abelian of square free exponent coprime to 6 and G is of odd order.
- A is abelian of square free odd exponent coprime to all Fermat primes or
 A is abelian of square free exponent coprime to 6 and the Sylow 2-subgroups of G are abelian
- A is abelian of order pqr for odd primes p, q, r which are not necessarily distinct and the Sylow 2-subgroups of G are abelian
- A is cyclic of order $p^n q$ for primes p, q coprime to 6 and the Sylow 2-subgroups of G are abelian

In 1987, C. Kei-Nah established this conjecture when A is cyclic of order pq for primes p,q.

- A is cyclic of order pqr for pairwise distinct primes p, q, r
- A is abelian of square free exponent coprime to 6 and G is of odd order.
- A is abelian of square free odd exponent coprime to all Fermat primes or
 - A is abelian of square free exponent coprime to 6 and the Sylow 2-subgroups of G are abelian.
- A is abelian of order pqr for odd primes p, q, r which are not necessarily distinct and the Sylow 2-subgroups of G are abelian
- A is cyclic of order $p^n q$ for primes p, q coprime to 6 and the Sylow 2-subgroups of G are abelian

In 1987, C. Kei-Nah established this conjecture when A is cyclic of order pq for primes p,q.

- A is cyclic of order pqr for pairwise distinct primes p, q, r
- A is abelian of square free exponent coprime to 6 and G is of odd order.
- A is abelian of square free odd exponent coprime to all Fermat primes or
 A is abelian of square free exponent coprime to 6 and the Sylow 2-subgroups of G are abelian.
- A is abelian of order pqr for odd primes p, q, r which are not necessarily distinct and the Sylow 2-subgroups of G are abelian
- A is cyclic of order $p^n q$ for primes p, q coprime to 6 and the Sylow 2-subgroups of G are abelian

In 1987, C. Kei-Nah established this conjecture when A is cyclic of order pq for primes p,q.

- A is cyclic of order pqr for pairwise distinct primes p, q, r
- A is abelian of square free exponent coprime to 6 and G is of odd order.
- A is abelian of square free odd exponent coprime to all Fermat primes or
 A is abelian of square free exponent coprime to 6 and the Sylow 2-subgroups of G are abelian.
- A is abelian of order pqr for odd primes p, q, r which are not necessarily distinct and the Sylow 2-subgroups of G are abelian
- A is cyclic of order $p^n q$ for primes p, q coprime to 6 and the Sylow 2-subgroups of G are abelian

In 1987, C. Kei-Nah established this conjecture when A is cyclic of order pq for primes p,q.

- A is cyclic of order pqr for pairwise distinct primes p, q, r
- A is abelian of square free exponent coprime to 6 and G is of odd order.
- A is abelian of square free odd exponent coprime to all Fermat primes or
 A is abelian of square free exponent coprime to 6 and the Sylow 2-subgroups of G are abelian.
- A is abelian of order pqr for odd primes p, q, r which are not necessarily distinct and the Sylow 2-subgroups of G are abelian
- A is cyclic of order $p^n q$ for primes p, q coprime to 6 and the Sylow 2-subgroups of G are abelian

New results on fixed point free noncoprime action

Ercan-Güloğlu - 2023

- Let A be a nilpotent group acting fixed point freely on the group G where $(|F_3(G)/F(G)|, |A|) = 1$ and $|F_2(G)/F(G)|$ is odd. Suppose further that A is $\mathbb{Z}_2 \wr \mathbb{Z}_2$ -free and $\mathbb{Z}_r \wr \mathbb{Z}_r$ -free for all Mersenne primes r. Then $h(G) \leq \ell(A)$.
- Let A be a cyclic group acting fixed point freely on the (solvable) group G. Then (i) $h(G) \leq \ell(A)$ if $(|F_3(G)/F_2(G)|, |A|) = 1$ and $|F_2(G)/F(G)|$ is odd, and (ii) $h(G) \leq 2\ell(A)$ if $|F_2(G)/F(G)|$ is odd.

* A.Espuelas

Techniques

Let A be a nilpotent group acting fixed point freely on G. Then there exist sections P_1, \ldots, P_h of G (called an A-Fitting chain of G) with $P_i = S_i/T_i$, $i = 1, \ldots, h$, where $S_i, T_i \leq G$ such that $T_i \leq S_i$ and h = h(G) satisfying

(a) P_i is a nontrivial p_i -group, for some prime p_i , (b) $\Phi(P_i) \leq Z(P_i), \Phi(\Phi(P_i)) = 1$ and if $p_i \neq 2$, $exp(P_i) = p_i$, (c) P_i is A-invariant, for $i = 1, \ldots, h$ (d) $p_i \neq p_{i+1}$, for $i = 1, \ldots, h-1$. (e) $T_i = Ker(S_i \text{ on } P_{i+1})$, for i = 1, ..., h - 1, (f) $T_h = 1$ and $S_h < F(G)$. $(q) [\Phi(P_{i+1}), S_i] = 1$, for $i = 1, \ldots, h-1$, (h) ($\prod S_i A$ acts irreducibly on \tilde{P}_i . $1 \le j \le i$

Techniques

Theorem

Let $G \trianglelefteq GA$ where G is solvable, A satisfies the condition ** and normalizes a Sylow system of G.

Let P be a p-subgroup of G, for some prime p, such that $P \trianglelefteq GA$, $\Phi(P) = P' \le Z(P)$, exp(P) = p if $p \ne 2$, and $P/\Phi(P)$ is completely reducible GB-module for any subgroup B of A.

Let Q be an A-invariant q-subgroup of $C_G(\Phi(P))$ for a prime qwhich is coprime to p|A| and not a Fermat prime if p = 2. Assume that $\Phi(Q/Q_0) \leq Z(Q/Q_0)$ where $Q_0 = C_Q(P)$, and $QC_G(P/P') \trianglelefteq GA$, and that [Q, P] = P if $P' \neq 1$.

Assume further that the following hold:

(i) $P = [P, B]^G$ for every $B \le A$ with $\ell(B) \ge 1$,

(*ii*) if P is nonabelian, $Q = [Q, C]^{N_G(Q)}Q_0$ for every $C \le A$ with $\ell(C) \ge 2$,

(iii) p is coprime to |A| when A is noncyclic.

Let χ be a complex GA-character such that $P \not\leq \ker(\chi)$. Then

 χ_A contains the regular A-character.

Definition

Let A act on G by automorphisms. We say the action is good, if

 $H = [H, B]C_H(B)$

for every subgroup B of A and every B-invariant subgroup H of G.

Every coprime action is good.

Definition

Let A act on G by automorphisms. We say the action is good, if

 $H = [H, B]C_H(B)$

for every subgroup B of A and every B-invariant subgroup H of G.

Every coprime action is good.

Consequences of good action

- The action of B on every B-invariant subgroup of G is good.
- The equality [H, B, B] = [H, B] holds for any *B*-invariant subgroup *H* of *G*.
- The equality $C_{H/N}(B) = C_H(B)N/N$ holds for any *B*-invariant subgroup *H* of *G* containing *N*.
- The induced action of B on G/N is good.
- Let $p \in \pi(A)$ and let B be a p-subgroup of A. If G is p-solvable then [G, B] is a p'-group. In particular, B acts trivially on each B-invariant p-subgroup of G.
- There exists an A-invariant Sylow subgroup of G for every prime dividing the order of G whenever G is solvable.

- The action of B on every B-invariant subgroup of G is good.
- The equality [H, B, B] = [H, B] holds for any *B*-invariant subgroup *H* of *G*.
- The equality $C_{H/N}(B) = C_H(B)N/N$ holds for any *B*-invariant subgroup *H* of *G* containing *N*.
- The induced action of B on G/N is good.
- Let $p \in \pi(A)$ and let B be a p-subgroup of A. If G is p-solvable then [G, B] is a p'-group. In particular, B acts trivially on each B-invariant p-subgroup of G.
- There exists an A-invariant Sylow subgroup of G for every prime dividing the order of G whenever G is solvable.

- The action of B on every B-invariant subgroup of G is good.
- The equality [H, B, B] = [H, B] holds for any *B*-invariant subgroup *H* of *G*.
- The equality $C_{H/N}(B) = C_H(B)N/N$ holds for any *B*-invariant subgroup *H* of *G* containing *N*.
- The induced action of B on G/N is good.
- Let $p \in \pi(A)$ and let B be a p-subgroup of A. If G is p-solvable then [G, B] is a p'-group. In particular, B acts trivially on each B-invariant p-subgroup of G.
- There exists an A-invariant Sylow subgroup of G for every prime dividing the order of G whenever G is solvable.

- The action of B on every B-invariant subgroup of G is good.
- The equality [H, B, B] = [H, B] holds for any *B*-invariant subgroup *H* of *G*.
- The equality $C_{H/N}(B) = C_H(B)N/N$ holds for any *B*-invariant subgroup *H* of *G* containing *N*.
- The induced action of B on G/N is good.
- Let $p \in \pi(A)$ and let B be a p-subgroup of A. If G is p-solvable then [G, B] is a p'-group. In particular, B acts trivially on each B-invariant p-subgroup of G.
- There exists an A-invariant Sylow subgroup of G for every prime dividing the order of G whenever G is solvable.

- The action of B on every B-invariant subgroup of G is good.
- The equality [H, B, B] = [H, B] holds for any *B*-invariant subgroup *H* of *G*.
- The equality $C_{H/N}(B) = C_H(B)N/N$ holds for any *B*-invariant subgroup *H* of *G* containing *N*.
- The induced action of B on G/N is good.
- Let $p \in \pi(A)$ and let B be a p-subgroup of A. If G is p-solvable then [G, B] is a p'-group. In particular, B acts trivially on each B-invariant p-subgroup of G.
- There exists an A-invariant Sylow subgroup of G for every prime dividing the order of G whenever G is solvable.

- The action of B on every B-invariant subgroup of G is good.
- The equality [H, B, B] = [H, B] holds for any *B*-invariant subgroup *H* of *G*.
- The equality $C_{H/N}(B) = C_H(B)N/N$ holds for any *B*-invariant subgroup *H* of *G* containing *N*.
- The induced action of B on G/N is good.
- Let $p \in \pi(A)$ and let B be a p-subgroup of A. If G is p-solvable then [G, B] is a p'-group. In particular, B acts trivially on each B-invariant p-subgroup of G.
- There exists an A-invariant Sylow subgroup of G for every prime dividing the order of G whenever G is solvable.

- The action of B on every B-invariant subgroup of G is good.
- The equality [H, B, B] = [H, B] holds for any *B*-invariant subgroup *H* of *G*.
- The equality $C_{H/N}(B) = C_H(B)N/N$ holds for any *B*-invariant subgroup *H* of *G* containing *N*.
- The induced action of B on G/N is good.
- Let $p \in \pi(A)$ and let B be a p-subgroup of A. If G is p-solvable then [G, B] is a p'-group. In particular, B acts trivially on each B-invariant p-subgroup of G.
- There exists an A-invariant Sylow subgroup of G for every prime dividing the order of G whenever G is solvable.

Nontrivial action of a *p*-group on another *p*-group is not good. For example, let $G = Q_8 = \langle a, b : a^4 = 1, a^2 = b^2, a^b = a^{-1} \rangle$ and let $\alpha \in Aut \ Q_8$ defined by $\alpha(a) = b$ and $\alpha(b) = a$. Set $A = \langle \alpha \rangle$. Then $N = \langle a^2 \rangle$ is an A-invariant normal subgroup of G. We have $C_{G/N}(A) \neq 1$, but $C_G(A) = N$. This means

 $C_{G/N}(A) \neq C_G(A)N/N$

and hence the action is not good.

Let A and G be both solvable where G is of odd order and let A act on G. If the action is good then

 $h(G) \le h(C_G(A)) + 4\ell(A).$

* G. Ercan, İ. Ş. Güloğlu and E. Jabara, *Good action on a finite group*, J. Algebra 560 (2020) 486-501.

Let a nilpotent group A of odd order which is $C_p \wr C_p$ -free for any prime p act good on the group G of odd order. Assume further that every proper subgroup of A acts with regular orbits. Then

 $h(G) \le \ell(A) + \ell(C_G(A))$

and this bound is the best possible.

* G. Ercan and I. Ş. Güloğlu, *Good action of a nilpotent group* with regular orbits, Com. Algebra 50 (10) (2022) 4191-4194.

Let A be a nilpotent group of odd order acting good and fixed point freely on the group G. Suppose that A is $C_q \wr C_q$ -free for any prime q, and that every subgroup of A acts with regular orbits on G. Then

 $h(G) \leq \ell(A).$

* G. Ercan, İ. Ş. Güloğlu and E. Jabara, *Good action on a finite group*, J. Algebra 560 (2020) 486-501.

THANK YOU