The structure of finite groups with restrictions on the set of conjugacy classes. Ilya Gorshkov

ilygor 8@gmail.com

Consider a finite group G. For $g \in G$, denote by g^G the conjugacy class of G containing g, and by $|g^G|$ the size of g^G . Put N(G) is the set of conjugacy class sizes of G.

For a long time, groups which set of conjugacy class size can be represented as a product of two sets were studied. Let's formulate the following question.

Question 1. Let G be a group such that $N(G) = \Omega \times \Delta$. Which Δ and Ω guarantee that $G \simeq A \times B$, where A and B are subgroups such that $N(A) = \Omega$ and $N(B) = \Delta$?

In this talk, I will try to give a partial answer to this question.